
International Journal of Information Communication Science and Technology
ISSN: 2162-139X (Print), ISSN 2162-148X (Online)
DOI: http://doi.org/10.73083/osp/41973/2019
Journal Homepage: https://originaljournals.com

51

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative

Commons license, and indicate if changes were made

THE SIGNIFICANCE ROLE OF PROGRAMMING IN
INFORMATION TECHNOLOGY (IT)

(Submitted: June 11, 2019; Accepted: July 29, 2019)
Volume 1, Issue 2 pp. 51-58 July 2019

1Atianashie, Miracle A., 2Eneji, Samuel Eneji Ph.D., 3Ibe, Walter Eyong, 4Angib Maurice Udie

1Department of Computer Science, Catholic University College of Ghana
2,3,4 Department of Computer Science Federal College of Education Obudu Cross River State, Nigeria

Abstract: This paper discusses the role of programming in IT, the types of skills necessary, how we see
the need for this skill changing in the other "pillars" of this academic discipline, and the impact on
programming curricula. Looking forward programming has emerged as "the" foundation skill for
information technologists. since the requisite skill sets of IT professionals differ from those of other
computing professionals, programming in IT is fundamentally different from programming in computer
science or software engineering. The IT Department at CUCG has changed the weight and delivery of
programming in its curriculum several times since its inception in 1992. Today, programming is an
essential foundation for other more advanced IT skills in all curricular knowledge areas, and it is a central
outcome of our curriculum. However, for good or bad, the programming sequence in many CS programs is
seen as a mechanism for weeding out weak students. Our experience is that many students who struggle
in the CS/SE programming sequence do well in the IT programming sequence, not because the IT sequence
is less difficult (it isn’t), but because it is more focused on the kinds of computing tasks, they thought CS
would prepare them to do.

Keywords: programming, information technology, web development, database

1. INTRODUCTION

Since the inception of information technology (IT) as an academic discipline, the role of computer
programming has been an arguable issue. In some suitcases, IT has been alleged – or perhaps misperceived
– as being computing with less programming [5, 6]. Other programs do not differentiate between the
programming needs of information technologists and the programming skills taught in older computing
disciplines, such as computer science [7, 8]. However, programming in IT is different [9].
As defined in the current draft of the ACM computing curriculum, Computing Curriculum – Information
Technology Volume, IT is a broad computing discipline with knowledge areas encompassing five content sub-
disciplines or “pillars”: The five pillars of an IT curriculum are programming, networking, web systems,
information management, and human-computer interaction. We have recommended above that
programming be covered in the introductory material; the remaining four pillars (also knowledge areas)
should be covered in the intermediate material. It is the feeling of the committee that these four knowledge
areas are best studied after students have been introduced to them briefly in the introductory material, and
after the students have learned the basics of programming in an appropriate high-level language [1]. While
programming is a tool for all computing professionals, programming in IT is fundamentally different from
programming in computer science or software engineering because the programming tasks and requisite
skillsets for IT professionals differ significantly from those of other computing professionals. IT professionals
deal with issues at the interfaces between technologies. In IT, programming is the tool used to “glue” together
technologies to create infrastructure solutions [10]. We agree with the ACM IT curriculum that programming
is the foundation for the other essential skills in all of the IT curricular knowledge areas [2], and as such, it
should be a central outcome of any IT curriculum. This position paper discusses the role of programming in
IT, how programming in IT is different, the programming skills necessary for IT professionals, and how we
see the need for this skill changing in the other pillars of the IT discipline.

https://originaljournals.com/
http://creativecommons.org/licenses/by/4.0/

International Journal of Information Communication Science and Technology
ISSN: 2162-139X (Print), ISSN 2162-148X (Online)
DOI: http://doi.org/10.73083/osp/41973/2019
Journal Homepage: https://originaljournals.com

52

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative

Commons license, and indicate if changes were made

2. OUR EXPERIENCE
The Information Technology Department at the Catholic University College of Ghana (CUCG) began offering
its Bachelor of Science degree in information technology (BS/IT) in 2001. presently, we enroll approximately
1200 full and part-time undergraduate students and admit over 200 new freshmen each year. Since the
beginning, computer programming has consistently been a key component of our IT curriculum. However,
our discernment of the role of programming and the skills needed by IT professionals has changed as the IT
discipline has matured. We currently see programming as “the” fundamental technical skill for information
technologists, and we believe that the importance of strong programming skills for information technologists
will increase in the future. To understand how we have arrived at this conclusion, some discussion of our
experience in teaching programming is indispensable. Table 1 shows a chronology of the programming
experiences we have offered in our baccalaureate IT program since the start of our degree.

Table 1. Programming Chronology1
Student

Fall Winter Spring

First C++ C++ C++

First

Second

-

C++

 ToolBook2

HyperCard3

C++

 -

C++

First - HyperCard -

Second C++ VB C++

First C++ C++ VB

First VB VB -

First VB VB Director4

First Java Java Java

Second Director - -

When we deployed afar our IT curriculum, we taught C++ in our freshmen programming sequence. We
offered one year of C++ programming in three (3) courses: an introductory programming course, an
introduction to OOP concepts, and an introduction to GUI interfaces and events. we began offering a “pre-
programming course” to provide a fundamental understanding of events and event handling, first in Tool
Book, then in HyperCard, and finally in Visual Basic. we had eliminated event-driven programming in C++
in favour of Visual Basic because freshmen had understandable difficulty with event-driven GUI concepts in
C++. we evaluated Java as a possible foundation language for teaching introductory programming but found
it too unstable. We felt at that time that the Java programming environment was inappropriate for novice
programmers who could not tell the difference between their own mistakes and bugs in the compiler. So, we
settled on Visual Basic as our foundation language and eliminated C++ from our core curriculum.

1 Platte Canyon Multimedia Software Corporation, http://www.plattecanyon.com/
2 Apple Corporation, www.apple.com
3 Macromedia Corporation, http://www.macromedia.com/

We offered a two-course Visual Basic (VB) freshman programming sequence for the next three years.
Although the VB programming interface is very good for illustrating objects and events and is a fine “glue”
environment, we found that it was a poor pedagogical tool for novice programmers because they had difficulty
seeing the “whole” program. Having the code distributed across multiple objects too early in the learning

https://originaljournals.com/
http://creativecommons.org/licenses/by/4.0/

International Journal of Information Communication Science and Technology
ISSN: 2162-139X (Print), ISSN 2162-148X (Online)
DOI: http://doi.org/10.73083/osp/41973/2019
Journal Homepage: https://originaljournals.com

53

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative

Commons license, and indicate if changes were made

process tended to confuse some students. We found that, on average, retention of programming concepts
was not as strong as we felt necessary, and we found that students also had problems transferring their
knowledge to later courses that used programming languages without GUI interfaces. In addition, we became
concerned that six months of programming was not a sufficient foundation for the programming skills
necessary for our upper-level IT curriculum. Although we added a directory-based authoring and animation
course to the core in 2002 and had already added programming assignments to the other courses in the BS/IT
core to help students retain their programming skills, we were still not seeing the overall level of proficiency
that we wanted. So, we turned our attention back to Java and decided that it had stabilized sufficiently for
our freshmen. We currently teach our foundation programming sequence as three Java courses: a first course
in introductory programming concepts, the second course in OOP concepts with I/O, error handling and the
basic GUI interface classes, and the third course on advanced GUI concepts, data structures with threads and
sockets, utilities, reusability, and software project management concepts. We teach the sequence in specially
designed classrooms that support active learning. As previously reported [3][4], this sequence has been very
successful. Student feedback has been positive; retention through the first-year programming sequence has
increased, and the faculty is more satisfied with students’ demonstrated skills in downstream courses.

We feel that an understanding of software objects and the firing of and response to events within and between
software/hardware systems is subjectical for IT professionals. At its most basic, the ability to program
provides the capability of interpreting events and “thinking like the machine” that is so subjective for
successful problem solving within the computing domain. This ability enables students to see the synergy
between the IT knowledge areas that are necessary for successful IT professionals.

3. OUR CURRENT PERSPECTIVE
IT is a diverse computing discipline, with a wide variety of rapidly emerging sub-disciplines. This makes it
difficult to identify the common core competencies in programming for all IT professionals. However, we
feel that there are identifiable expected outcomes for programming that span the IT spectrum. These common
outcomes not only help sharpen the focus of IT programming curricula; they also help define IT as a unified
discipline. IT programming outcomes differ from the expected programming outcomes in Computer Science
(CS) and Software Engineering (SE). Some of these differences are fundamental, and some are subtler, but
they help delineate IT curricula from CS/SE curricula. CUCG is among institutes of higher education to have
professionally accredited Bachelors's programs in Information Technology, Computer Science, Software
Engineering, and Computer Engineering (CE). Consequently, we feel we have a uniquely unique perspective
on the differences between these computing disciplines. While there are differences in expected outcomes
among CS, SE, and CE, they are less pronounced than those between any of them and IT. For this paper,
then, we’ll lump CS, SE, and CE together and call the aggregate CS/SE, in deference to the fact that CS, SE,
and CE students at CUCG all take the same five-course programming sequence from the CS and SE
departments. IT students take a different programming sequence offered by the IT department, which
reflects our beliefs that IT programming skills differ fundamentally from CS, and that IT students are not well
served by a “standard” CS programming sequence. So, what is programming in IT, and how does it differ
from programming in CS/SE? We’ll answer these two questions concurrently since it is difficult to describe
what characterizes IT programming without contrasting it with the well-known benchmark of CS/SE
programming. Probably the biggest distinction is that IT professionals don’t build large systems from scratch.
An essential outcome in CS/SE is the ability to build large software systems from scratch in a team setting, in
other words, classic software engineering. IT professionals, on the other hand, are not software engineers.
They may build large systems, but not from scratch.

This distinction arises from one of the fundamental differences between IT and CS/SE/CE as academic
disciplines – CS, SE, and CE focus on creating new technology, while IT focuses on making effective use of
existing technology [10]. In the programming arena, this means that CS/SE must be able to build large
systems from scratch; that’s what it means to “create” new software technology. IT, on the other hand, tends
to build systems from existing components. IT systems can be very large, to be sure, but they are built by
integrating existing functionality that has been identified as useful to a targeted user community.

https://originaljournals.com/
http://creativecommons.org/licenses/by/4.0/

International Journal of Information Communication Science and Technology
ISSN: 2162-139X (Print), ISSN 2162-148X (Online)
DOI: http://doi.org/10.73083/osp/41973/2019
Journal Homepage: https://originaljournals.com

54

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative

Commons license, and indicate if changes were made

Consider, as an example IT application, a Web-based, multi-user game developed by a team of four students
for a Web-database integration course offered at CUCG in the spring, 2005 quarter. The gaming domain is
perfect for illustrating the IT application development process because today’s multi-user games rest firmly
on all five of the IT pillars and, therefore, are essentially a microcosm of the IT discipline. Game design and
development is also one of our most popular IT concentration areas and is the career most frequently asked
about among our entering students.

Our example application is a Web-based, multi-user, exploratory game, where users wander through a
virtual space of connecting rooms and interact both with objects in the rooms and with other players that
they encounter. The interactions with other players take the form of mini-games, with each room supporting
a different mini-game. The interactions in this game lead to two different kinds of data communication –
asynchronous, for loading room information when a player enters a new room, and synchronous, for
interacting with other players and with objects within a room. A database (MySQL) stores everything used
in playing the game: room information and methods, character information (including avatars), user
account information, images, sounds, graphics, and animations. The client-side is implemented in Flash
and communicates with the database via a PHP-based middle layer that accommodates interface
inconsistencies between Flash and MySQL and filters information for appropriate use by destination
processes. In summary, this is a classic three-tier application with real-time interactive multimedia.There
are significant design issues in this application. For example, PHP can pull, but it can’t push, so the client
process must poll the server periodically to reflect changes in the room. Polling too frequently can swamp
the server, which degrades the real-time illusion. Polling too infrequently also degrades the experience.
Another design issue is the choice of when to use time-based animation (the movie metaphor) and when to
use code-driven animation (CUCG) moving under program control). Each method offers different
advantages and disadvantages, and each method raises different integration issues. In short, applications
like this, which are typical in the IT world, offer significant levels of complexity and demand careful design
to successfully integrate disparate components. It is tempting to say that CS does programming in the large,
while IT does programming in the small [11]. It is true that most IT applications are built by individuals or
small groups and that these applications are often systems of scripts that glue together existing components
and provide a usable interface to the integrated functionality of those components. However, these
applications can be quite large and complex, as the previous example illustrates.

The distinction we would make is that CS focuses on designing architectures where the components are
mutable, and IT focuses on building architectures that both accommodate and take advantage of existing
components. In other words, CS/SE gets to design the components themselves and the interfaces among
components, while IT has to work with the interfaces that others develop. The issue here, obviously, is reuse,
something that good software engineering is supposed to facilitate. However, most software engineers will
gladly build a new component if the existing component doesn’t fit the architecture. In IT, the needed skill is
to make the component fit, often by building a filter or middle layer to integrate disparate components. The
outcome in CS/SE is to design for reuse; the outcome in IT is to design by reuse. Some in the CS/SE
community see the IT aversion to building things from scratch as a lack of ability to deal with complexity or
as just laziness [16]. This criticism is incorrect. IT professionals come at an application from the user’s
perspective rather than the computer’s perspective, and their priority is to identify and meet user needs. This
requires a more flexible approach to application development than the traditional waterfall model allows and
demands that maximum use be made of existing functionality to be productive. To be fair, the increasing
popularity of agile computing methodologies [14] in the SE community is a good response to this issue.

4. PROGRAMMING IN THE PILLARS
Historically when a new IT technology has emerged, direct programming has initially tended to play little or
no role. However, as a technology advances and its functionality is enhanced, it tends to become more
powerful and then requires programming. Web pages are a classic example. Early Web pages were built from
static HTML scripts. Web pages today are dynamic, with programming functionality on the client-side, on
the server-side, and for connectivity with backend databases. We assert that as technology continues to
advance, programming will become an increasingly important part of the responsibilities of the IT

https://originaljournals.com/
http://creativecommons.org/licenses/by/4.0/

International Journal of Information Communication Science and Technology
ISSN: 2162-139X (Print), ISSN 2162-148X (Online)
DOI: http://doi.org/10.73083/osp/41973/2019
Journal Homepage: https://originaljournals.com

55

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative

Commons license, and indicate if changes were made

professional, regardless of specialty area. So, we looked at where programming exists within our curriculum
and talked with colleagues from each of the pillar areas to get their perspectives on how computer
programming is and will be used within their areas. Table 2 shows the occurrence of programming in CUCG’s
current upper-level, or post-core, BS/IT
curriculum.

Table 2. Programming Weight in BS/IT Post-Core

BS/IT Pillar # Courses Weight
Programming
(including games)

7 100.0%

Database 4 50.0%
Networking 19 26.3%

Web Technologies 11 72.7%
HCI 6 33.0%

IT students at CUCG complete two three-course concentrations chosen from 12 that are currently available.
Some of these concentrations fit neatly into one of the five IT pillars. For example, Network Administration,
Wireless Networking, and System Administration all fit into the Networking pillar. Game Design and
Development, on the other hand, fits well in both programming and Web technologies, with a heavy dose of
HCI and definite needs from networking and database. As we have noted before, it is the synergy among the
pillars that define IT [13]. The “# Courses” column in Table 2 reflects a somewhat arbitrary assignment of
each advanced course to one of the five pillars. For example, our games courses were assigned to the
programming pillar. The “Weight” column reflects the percentage of post-core courses in that pillar in which
programming is a primary activity. This is usually manifested in one or more projects that require significant
programming, often a “final” project. We’ll turn now to the five IT pillars and briefly discuss the kinds of
programming that are typical in each.

Programming
It’s not surprising that all of the advanced courses in the programming pillar require programming. Our
switch from VB to Java as the language used in our introductory courses four years ago has led to a
corresponding migration from .NET to Java-based development in our advanced programming courses in
the last two years. The advanced IT programming courses focus on advanced application development
spanning multiple languages, working with component models and security models, and distributed
programming using various APIs. The specific languages used in these courses are only tools, but we’ve
gotten greater traction from Java as the base language. We grouped the three-course gaming concentration
in this pillar because the focus in those courses is on “heavyweight” games developed in C++ and running as
standalone applications, the current gaming industry standard. Web-based, “lightweight” games tend to
come out of our interactive media group and line up best with the Web technologies pillar. The term
lightweight, however, can be misleading, as our multi-user, Web-based game example described above
illustrates.

Database
Programming is important with databases because the types of interfaces through which we currently access
information, client/server, and the web, are not expected to change for the foreseeable future. These
applications employ connectivity through JDBC or .Net technology and require data manipulation at the
transaction level. For these interfaces, script an SQL statement is not adequate. Whereas SQL alone may be
sufficient for simple reporting needs, IT database professionals need to be able to handle data transfer,
conversion, and cleansing as well as changes to the design of data systems. This means using programmatic
interfaces – typically a combination of traditional and DBMS programming languages as well as scripting
languages, such as Perl, which are useful for ad hoc data extraction. The interpreted nature of scripting
languages makes them perfect for “quick and dirty” data manipulation tasks. However, in situations where
the “right” component for a task is not readily available, database professionals need the ability to code. Even
if a database professional should never need to write programs, he or she still must be able to interact with

https://originaljournals.com/
http://creativecommons.org/licenses/by/4.0/

International Journal of Information Communication Science and Technology
ISSN: 2162-139X (Print), ISSN 2162-148X (Online)
DOI: http://doi.org/10.73083/osp/41973/2019
Journal Homepage: https://originaljournals.com

56

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative

Commons license, and indicate if changes were made

programming professionals during software development projects and help formulate the solution to
problems. This fact alone necessitates a solid indulgence of computer programming principles.

Networking
IT networking and system administration professionals need solid programming skills to support their
understanding of network protocols at the transport layer. Abstract manipulation skills are important here
because they must be able to operationalize algorithms on the TCP/IP stack and manipulate system tables
algorithmically. In the future, networking appliances will incorporate more direct administrator-
programming capabilities. Currently, network hardware is primarily programmed by the manufacturer,
often at the hardware level. However, in the near future, we expect these devices to be directly programmable
by the network administrator. User-configurable network processors will be tuneable so that networking
functions, such as routing, can be adjusted to special purposes and security needs. Plus, we expect networking
and system administration functionality to be more integrated into future protocols. The ability to develop
customized software solutions will be beneficial because since they are directly modifiable by the end-user,
sites will be able to deploy their protocols. Programming within this pillar is different from computer science
programming in its depth. However, network and system administrators must be willing, capable, and
unafraid to program.

Web Technologies
Untimely days of the WWW, it was sufficient to build static Web pages that displayed content as text and
images. Interactivity was limited to following hyperlinks to other pages, which was, and still is, highly useful,
but requires no real programming prowess. Today, Web sites, especially those that people pay to have built,
are dynamic, interactive, media-rich, and highly adaptable. In other words, they do things, which require
programming. The game example described above is a typical Web-based application. Web applications are
increasingly the preferred deployment choice in many situations because platform, distribution, and
maintenance issues often can be dealt with more easily. As is true in the other pillars, scripting largely
replaces traditional programming as the primary activity, and the trend is toward more distributed
applications and meta-approaches like XML.

Human-Computer Interaction
In the IT HCI pillar, programming once again takes a pivotal role, specifically in rapid prototyping activities
that underlie the usability engineering lifecycle [12]. This approach to development focuses on building a
useful and usable interface first, using a spiral process of prototyping and usability testing until the user
community buys into the prototype interface. This process helps identify and define functionality by giving
users a clearer view of what the system will do, and more importantly, what it can do. Once the interface is
solid, it’s time to identify and define the functionality required in the system. In a sense, this development
method is the opposite of the classic waterfall model. Instead of identifying functionality first and building
the user interface last, it uses the development of the interface as a tool to identify needed functionality.

5. THE MYTH OF THE COMMON CORE
So, what’s wrong with the typical CS/SE programming sequence for IT students? One might argue that
implementing the classic data structures and algorithms from scratch and building entire large systems from
the ground up (or the top down, as the case may be) is good preparation for any computing professional. If
you can build a huge system from scratch, then you surely can build a smaller system from components, or
as the song says, “If you can make it there, you can make it anywhere.”

Two questions need to be answered, however. First, is the standard CS programming
sequence necessary to prepare IT, students, for the kinds of programming tasks they
need to perform? Second, if it is not necessary, is it at least sufficient for preparing IT
students. Our answer to both questions is “No.”

IT students must be able to use stacks, queues, lists, trees, graphs, and other data structures appropriately,
but they don't need to implement them from scratch. For example, a software engineer working for Oracle

https://originaljournals.com/
http://creativecommons.org/licenses/by/4.0/

International Journal of Information Communication Science and Technology
ISSN: 2162-139X (Print), ISSN 2162-148X (Online)
DOI: http://doi.org/10.73083/osp/41973/2019
Journal Homepage: https://originaljournals.com

57

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative

Commons license, and indicate if changes were made

needs to worry about implementing external data structures like B-Trees to make the Oracle engine efficient,
but an Oracle application developer doesn’t need to know how the tables they define are mapped to the disk.
Similarly, the folks at Macromedia who design and implement the scripting environment in Flash need to
know something about designing language syntax and semantics, which they would have picked up writing a
compiler in their CS curriculum, but the application developer who uses Flash to build a client agent in a
multi-tier system need not know how the parser works. In other words, it is not necessary to know how the
underlying technology was built to use it effectively, provided the underlying technology was built well. So, if
the standard CS programming sequence is not necessary for IT students, is it at least sufficient? After all,
many, if not most, computing students begin their college careers not knowing the differences between the
various computing disciplines, and IT, as the newest, is often the biggest mystery. Wouldn’t it be
advantageous to give new students time to decide whether they want to pursue IT, CS, SE, CE, or even
Information Systems by having all computing students take the same introductory sequence? Even though
the standard CS isn’t an ideal fit for IT, isn’t it close enough?

There are two reasons why the standard CS programming sequence is not adequate for IT
students. First, the expected outcomes from the CS sequence are not the outcomes expected of IT students,
as we’ve hopefully made clear. At CUCG the first CS programming course and the first IT programming
course have similar outcomes, using the standard data types and control structures, and introducing objects.
In the second course, the two-course sequences begin to diverge. CS presents object-oriented development
by implementing classic data structures and algorithms, while IT presents object-oriented development
aiming toward GUI development and component integration. In its third and last programming core course,
IT focuses on threads and synchronization, inter-process communication with sockets, and building
moderate-sized applications using available components. From this point on, programming in IT becomes
pillar-specific. In the third CS programming course, students build moderate-sized systems from scratch to
prepare for the large systems with external data structures they will build in the fourth CS course and prepare
them for the introduction to software engineering, which is the fifth course. CS, SE, and CE students at CUCG
are expected to complete this five-quarter sequence by the middle of their sophomore year. Thus, the
expected outcomes from these two programming sequences are very different.

The second reason why the CS/SE sequence is not sufficient for IT students is that it mandates a build-it-
from-scratch mentality among students. Both IT and CS/SE students must be able to write a complete
program from scratch. However, the first instinct of the IT professional should be to write a script to integrate
existing components rather than to write new components. The nature of user-centered design is that the
design must change fundamentally during the development process to meet the shifting needs of users. The
spiral development process briefly described in section 4.5 requires rapid prototyping; building components
from scratch is simply not appropriate unless and until useful functionality is identified that does not already
exist.

Finally, there are cultural differences between IT and CS/SE. Most who have taught programming for any
length of time will agree that programming seems to be an unnatural act for most students, if not for most
human beings. Retention in programming sequences is notoriously low, with resulting low retention of
students in CS majors. This is a significant problem in meeting the needs of society for competent
professionals across all the computing disciplines [15]. For good or bad, the programming sequence in many
CS programs is seen as a mechanism for weeding out weak students. Our experience is that many students
who struggle in the CS/SE programming sequence do well in the IT programming sequence, not because the
IT sequence is less difficult (it isn’t), but because it is more focused on the kinds of computing tasks, they
thought CS would prepare them to do. Indeed, we still receive a significant number of internal transfer
students who switch into IT from CS, SE, and CE, despite our efforts to help potential students make informed
decisions as to which computing major best fits their career goals. Students who did well in the CS
programming sequence migrate fairly seamlessly into the IT sequence with no loss of credit. Serious students
who struggled in the CS programming sequence tend to find the IT sequence a better fit and also tend to
succeed. Students switching from IT to CS or SE are rare, but they seem to make the transition successfully,
particularly if they switch early in the course sequences and don’t have to “retake” CS courses corresponding

https://originaljournals.com/
http://creativecommons.org/licenses/by/4.0/

International Journal of Information Communication Science and Technology
ISSN: 2162-139X (Print), ISSN 2162-148X (Online)
DOI: http://doi.org/10.73083/osp/41973/2019
Journal Homepage: https://originaljournals.com

58

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative

Commons license, and indicate if changes were made

to the IT programming courses they have already taken. The bottom line is that programming in IT is
fundamentally different from programming in CS/SE and that IT students are not well served by a CS/SE
sequence.

6. CONCLUSION
The ability to handle complex programming tasks is emerging as a defining characteristic of an information
technologist regardless of specialty area. For other computing professionals, specifically CS, SE, and CE, the
focus is the computer – i.e., the computer itself is often the problem. IT professionals, however, are closer to
the end-user. Therefore, for IT professionals, the focus is on using computers to solve problems. This
perspective influences the kinds of programming tasks that IT professionals perform, which, in turn, should
influence the programming courses IT students take. In short, the IT programming curriculum differs from
the standard CS programming curriculum, and those differences become wider as the curricula progress. We
hope that this paper can generate discussion, both about the role of programming in IT and the best ways to
prepare IT, students, to fill those roles.

7. ACKNOWLEDGEMENTS

Thanks to all the IT Staff for their willingness to share their perspectives on programming in their curricular
areas, as it relates to IT and CS.

REFERENCES
[1] ACM Computing Curriculum – Information Technology Volume, April 2017 Draft, Chapter 7, p. 24; retrieved

June 5, 2005, from sigite.acm.org/activities/curriculum/.
[2] IT Body of Knowledge, 3/2005 Draft; retrieved June 5, 2017, from sigite.acm.org/activities/curriculum/.
[3] Hill, L., Bills, D., and Biles, J. A Studio Model Approach to Teaching Introductory Object-Oriented

Programming and Problem-Solving Using Java. In Proceedings of the 3rd Annual Conference for Information
Technology Curriculum, Rochester, NY, Sept. 19-21, 2002.

[4] Whittington, K., Bills, D., and Hill, L. Implementation of Alternative Pacing in an IT Introductory Programming
Sequence. In Proceedings of the 4th Annual Conference on Information Technology Curriculum (Lafayette, IN,
Oct. 1618, 2003). ACM Press, New York, NY, USA, 2003, 47-53.

[5] Chenoweth, J. Lessons Learned in the Development of an Information Technology Concentration. Journal of
Computing Sciences in College, Oct. 2001, 17(1), 218-223. Consortium for Computing Sciences in Colleges, USA.

[6] Prasad, C., Li, X. Teaching Introductory Programming to Information Systems and Computing Majors: Is there
a Difference? In Proceedings of the Sixth Australasian Computing Education Conference (Dunedin, New
Zealand, 2017). Australian Computer Society, Darlinghurst, Australia, 2019, Vol. 30, 261-267.

[7] Spooner, D. A Bachelor of Science in Information technology: An Interdisciplinary Approach. In Proceedings
of the 31st Technical Symposium on Computer Science Education (Austin, Texas, 2002). ACM Press, New York,
NY, USA, 2000, 285-289.

[8] Taffe, W. Information Technology: A Degree in Computing. Journal of Computing Sciences in Colleges, Feb.
2018, Vol. 17, Issue 3, 183-189. Consortium for Computing Sciences in Colleges, USA.

[9] Ekstrom, J. and Lunt, B. Education at the Seams: Preparing Students to Stitch Systems Together; Curriculum
and issues for 4-Year IT Programs. In Proceedings of the 4th Annual Conference on Information Technology
Curriculum (Lafayette, in, Oct. 16-18, 2018). ACM Press, New York, NY, USA, 2003, 196-200.

[10] DeRemer, F. and Kron, H. Programming-in-the-large versus programming-in-the-small. In Proceedings of the
International Conference on Reliable Software (Los Angeles, CA). ACM Press, New York, NY, 1975, 114-121.

[11] Nielsen, Jakob. Usability Engineering. Morgan Kaufmann, San Francisco, 2018.
[12] Biles, J. The importance of Synergy: Integrating Curricular Components in IT. In Proceedings of the 3rd Annual

Conference for Information Technology Curriculum, Rochester, NY, Sept. 19-21, 2002.
[13] Cockburn, A. Agile Software Development. AddisonWesley, Boston, MA, 2002.
[14] Forte, Andrea. Programming for Communication: Overcoming Motivational Barriers to Computation for All.

In Proceedings of the IEEE Symposia on Human-Centered Computing Languages and Environments, 2019,
Auckland, New Zealand, 285-286.

[15] Dougan, Cort. Good Programmers are Not Lazy. Unpublished manuscript retrieved June 30, 2005, from
http://hq.fsmlabs.com/~cort/publications/lazy/lazy.pdf

https://originaljournals.com/
http://creativecommons.org/licenses/by/4.0/

